Greater wing of sphenoid bone (Redirected from Alisphenoid)

Greater wing of sphenoid bone
Figure 1: Sphenoid bone, upper surface.
Figure 2: Sphenoid bone, anterior and inferior surfaces.
Details
Identifiers
Latinala major ossis sphenoidalis
TA98A02.1.05.024
TA2610
FMA52868
Anatomical terms of bone

The greater wing of the sphenoid bone, or alisphenoid, is a bony process of the sphenoid bone, positioned in the skull behind each eye. There is one on each side, extending from the side of the body of the sphenoid and curving upward, laterally, and backward.

Structure

The greater wings of the sphenoid are two strong processes of bone, which arise from the sides of the body, and are curved upward, laterally, and backward; the posterior part of each projects as a triangular process that fits into the angle between the squamous and the petrous part of the temporal bone and presents at its apex a downward-directed process, the spine of sphenoid bone.

Cerebral surface

The superior or cerebral surface of each greater wing [Fig. 1] forms part of the middle cranial fossa; it is deeply concave, and presents depressions for the convolutions of the temporal lobe of the brain. It has a number of foramina (holes) in it:

Lateral surface

The lateral surface [Fig. 2] is convex, and divided by a transverse ridge, the infratemporal crest, into two portions.

  • The superior temporal surface, convex from above downward, concave from before backward, forms a part of the temporal fossa, and gives attachment to the temporalis;
  • the inferior infratemporal surface, smaller in size and concave, enters into the formation of the infratemporal fossa, and, together with the infratemporal crest, serves as an attachment to the lateral pterygoid muscle.

It is pierced by the foramen ovale and foramen spinosum, and at its posterior part is the sphenoidal spine, which is frequently grooved on its medial surface for the chorda tympani nerve.

To the sphenoidal spine are attached the sphenomandibular ligament and the tensor veli palatini muscle.

Medial to the anterior extremity of the infratemporal crest is a triangular process that serves to increase the attachment of the lateral pterygoid muscle; extending downward and medialward from this process on to the front part of the lateral pterygoid plate is a ridge that forms the anterior limit of the infratemporal surface, and, in the articulated skull, the posterior boundary of the pterygomaxillary fissure.

Orbital surface

The orbital surface of the great wing [Fig. 2], smooth, and quadrilateral in shape, is directed forward and medially and forms the posterior part of the lateral wall of the orbit.

  • Its upper serrated edge articulates with the orbital plate of the frontal bone.
  • Its inferior rounded border forms the postero-lateral boundary of the inferior orbital fissure.
  • Its medial sharp margin forms the lower boundary of the superior orbital fissure and has projecting from about its center a little tubercle that gives attachment to the inferior head of the lateral rectus muscle; at the upper part of this margin is a notch for the transmission of a recurrent branch of the lacrimal artery.
  • Its lateral margin is serrated and articulates with the zygomatic bone.
  • Below the medial end of the superior orbital fissure is a grooved surface, which forms the posterior wall of the pterygopalatine fossa, and is pierced by the foramen rotundum.

Margin

Commencing from behind [Fig. 2], that portion of the circumference of the great wing that extends from the body to the spine is irregular.

  • Its medial half forms the anterior boundary of the foramen lacerum, and presents the posterior aperture of the pterygoid canal for the passage of the corresponding nerve and artery.
  • Its lateral half articulates, by means of a synchondrosis, with the petrous portion of the temporal, and between the two bones on the under surface of the skull, is a furrow, the sulcus of the auditory tube, for the lodgement of the cartilaginous part of the auditory tube.

In front of the spine the circumference presents a concave, serrated edge, bevelled at the expense of the inner table below, and of the outer table above, for articulation with the squamous part of the temporal bone.

At the tip of the great wing is a triangular portion, bevelled at the expense of the internal surface, for articulation with the sphenoidal angle of the parietal bone; this region is named the pterion.

Medial to this is a triangular, serrated surface, for articulation with the frontal bone; this surface is continuous medially with the sharp edge that forms the lower boundary of the superior orbital fissure, and laterally with the serrated margin for articulation with the zygomatic bone.

Development

The greater wing of the sphenoid bone starts as a separate bone, and is still separate at birth in humans.

Function

The sphenoid bone assists with the formation of the base and the sides of the skull, and the floors and walls of the orbits. It is the site of attachment for most of the muscles of mastication. Many foramina and fissures are located in the sphenoid that carry nerves and blood vessels of the head and neck, such as the superior orbital fissure (with ophthalmic nerve), foramen rotundum (with maxillary nerve) and foramen ovale (with mandibular nerve).

Clinical significance

In patients with neurofibromatosis type 1, malformation of the sphenoid bone wings may occur, due to aberrant cell development. This can ultimately lead to blindness if left untreated.

In other animals

In many mammals, e.g. the dog, the greater wing of the sphenoid bone stays through life a separate bone called the alisphenoid.

Additional images

External links


This page was last updated at 2024-04-17 12:42 UTC. Update now. View original page.

All our content comes from Wikipedia and under the Creative Commons Attribution-ShareAlike License.


Top

If mathematical, chemical, physical and other formulas are not displayed correctly on this page, please useFirefox or Safari