# Conical coordinates

Coordinate surfaces of the conical coordinates. The constants b and c were chosen as 1 and 2, respectively. The red sphere represents r = 2, the blue elliptic cone aligned with the vertical z-axis represents μ=cosh(1) and the yellow elliptic cone aligned with the (green) x-axis corresponds to ν2 = 2/3. The three surfaces intersect at the point P (shown as a black sphere) with Cartesian coordinates roughly (1.26, -0.78, 1.34). The elliptic cones intersect the sphere in spherical conics.

Conical coordinates, sometimes called sphero-conal or sphero-conical coordinates, are a three-dimensional orthogonal coordinate system consisting of concentric spheres (described by their radius r) and by two families of perpendicular elliptic cones, aligned along the z- and x-axes, respectively. The intersection between one of the cones and the sphere forms a spherical conic.

## Basic definitions

The conical coordinates ${\displaystyle (r,\mu ,\nu )}$ are defined by

${\displaystyle x={\frac {r\mu \nu }{bc}}}$
${\displaystyle y={\frac {r}{b}}{\sqrt {\frac {\left(\mu ^{2}-b^{2}\right)\left(\nu ^{2}-b^{2}\right)}{\left(b^{2}-c^{2}\right)}}}}$
${\displaystyle z={\frac {r}{c}}{\sqrt {\frac {\left(\mu ^{2}-c^{2}\right)\left(\nu ^{2}-c^{2}\right)}{\left(c^{2}-b^{2}\right)}}}}$

with the following limitations on the coordinates

${\displaystyle \nu ^{2}

Surfaces of constant r are spheres of that radius centered on the origin

${\displaystyle x^{2}+y^{2}+z^{2}=r^{2},}$

whereas surfaces of constant ${\displaystyle \mu }$ and ${\displaystyle \nu }$ are mutually perpendicular cones

${\displaystyle {\frac {x^{2}}{\mu ^{2}}}+{\frac {y^{2}}{\mu ^{2}-b^{2}}}+{\frac {z^{2}}{\mu ^{2}-c^{2}}}=0}$

and

${\displaystyle {\frac {x^{2}}{\nu ^{2}}}+{\frac {y^{2}}{\nu ^{2}-b^{2}}}+{\frac {z^{2}}{\nu ^{2}-c^{2}}}=0.}$

In this coordinate system, both Laplace's equation and the Helmholtz equation are separable.

## Scale factors

The scale factor for the radius r is one (hr = 1), as in spherical coordinates. The scale factors for the two conical coordinates are

${\displaystyle h_{\mu }=r{\sqrt {\frac {\mu ^{2}-\nu ^{2}}{\left(b^{2}-\mu ^{2}\right)\left(\mu ^{2}-c^{2}\right)}}}}$

and

${\displaystyle h_{\nu }=r{\sqrt {\frac {\mu ^{2}-\nu ^{2}}{\left(b^{2}-\nu ^{2}\right)\left(c^{2}-\nu ^{2}\right)}}}.}$

This page was last updated at 2021-10-23 12:41 UTC. . View original page.

All our content comes from Wikipedia and under the Creative Commons Attribution-ShareAlike License.

Top

If mathematical, chemical, physical and other formulas are not displayed correctly on this page, please useFirefox or Safari