Epsilon (rocket)

Epsilon
Epsilon flight F2 before launch in December 2016
FunctionLaunch vehicle
Country of originJapan
Cost per launchUS$39 million
Size
Height24.4 m (Demonstration Flight)
26 m (Enhanced)
Diameter2.5 m
Mass91 t (Demonstration Flight)
95.4 t (Enhanced)
Stages3–4
Capacity
Payload to 250 x 500 km orbit
Standard 3 stages configuration
Mass1,500 kg (3,300 lb)
Payload to 500 km orbit
Optional 4 stages configuration
Mass700 kg (1,500 lb)
Payload to 500 km SSO
Optional 4 stages configuration
Mass590 kg (1,300 lb)
Launch history
StatusActive
Launch sitesUchinoura
Total launches6
Success(es)5
Failure(s)1
Partial failure(s)0
First flight14 September 2013
Last flight12 October 2022
First stage – SRB-A3
Powered by1 solid
Maximum thrust2271 kN
Specific impulse284 s (2.79 km/s)
Burn time116 seconds
Second stage (Demonstration Flight) – M-34c
Powered by1 solid
Maximum thrust371.5 kN
Specific impulse300 s (2.9 km/s)
Burn time105 seconds
Second stage (Enhanced) – M-35
Powered by1 solid
Maximum thrust445 kN
Specific impulse295 s (2.89 km/s)
Burn time129 seconds
Third stage (Demonstration Flight) – KM-V2b
Powered by1 solid
Maximum thrust99.8 kN
Specific impulse301 s (2.95 km/s)
Burn time90 seconds
Third stage (Enhanced) – KM-V2c
Powered by1 solid
Maximum thrust99.6 kN
Specific impulse299 s (2.93 km/s)
Burn time91 seconds
Fourth stage (Optional) – CLPS
Maximum thrust40.8 N
Specific impulse215 s (2.11 km/s)
Burn time1100 seconds (maximun)
PropellantHydrazine

The Epsilon Launch Vehicle, or Epsilon rocket (イプシロンロケット, Ipushiron roketto) (formerly Advanced Solid Rocket), is a Japanese solid-fuel rocket designed to launch scientific satellites. It is a follow-on project to the larger and more expensive M-V rocket which was retired in 2006. The Japan Aerospace Exploration Agency (JAXA) began developing the Epsilon in 2007. It is capable of placing a 590 kg payload into Sun-synchronous orbit.

Vehicle description

The development aim is to reduce the US$70 million launch cost of an M-V; the Epsilon costs US$38 million per launch. Development expenditures by JAXA exceeded US$200 million.

To reduce the cost per launch the Epsilon uses the existing SRB-A3, a solid rocket booster on the H-IIA rocket, as its first stage. Existing M-V upper stages will be used for the second and third stages, with an optional fourth stage available for launches to higher orbits. The J-I rocket, which was developed during the 1990s but abandoned after just one launch, used a similar design concept, with an H-II booster and Mu-3S-II upper stages.

The Epsilon is expected to have a shorter launch preparation time than its predecessors; a function called "mobile launch control" greatly shortens the launch preparation time, and needs only eight people at the launch site, compared with 150 people for earlier systems.

The rocket has a mass of 91 t (90 long tons; 100 short tons) and is 24.4 m (80 ft) tall and 2.5 m (8 ft 2 in) in diameter.

Enhanced version

After the successful launch of the Epsilon first flight (demonstration flight), the improvement plan was decided to handle the planned payloads (ERG and ASNARO-2).

Requirements for the improvement:

  • Apogee ≧ 28700 km (summer launch), ≧ 31100 km (winter launch) of a 365 kg payload
  • Sun-synchronous orbit (500 km) of a ≧ 590 kg payload
  • Larger fairing

Planned characteristics:

  • Height: 26.0 m
  • Diameter: 2.5 m
  • Mass: 95.1 t (Standard) / 95.4 t (optional 4th stage (post-boost stage))

Catalog performance according to IHI Aerospace:

  • Low Earth orbit 250 km × 500 km for 1.5 t
  • Sun-synchronous orbit 500 km × 500 km for 0.6 t

Final characteristics:

  • Height: 26.0 m
  • Diameter: 2.6 m (max), 2.5 m (fairing)
  • Mass: 95.4 t (standard) / 95.7 t (optional)

Epsilon S

Epsilon's first stage has been the modified SRB-A3 which is the solid-rocket booster of H-IIA. As the H-IIA is to be decommissioned and to be replaced by H3, Epsilon is to be replaced by new version, named Epsilon S.

Major changes of Epsilon S from Epsilon are:

  • The first stage is based on SRB-3, the strap-on solid-rocket booster of H3.
  • The third stage is a new design, whereas Epsilon's third stage was based on the M-V's third stage. New third stage is three-axis stabilized using Post-Boost Stage (PBS), whereas Epsilon's third stage was spin-stabilized. Also the third stage is outside the fairing, whereas Epsilon's fairing covered the third stage.
  • The Epsilon S Post-Boost Stage is mandatory, whereas Epsilon's PBS was optional.

Planned performance of Epsilon S is:

  • Sun-synchronous orbit (350 – 700 km): ≧ 600 kg
  • Low Earth orbit (500 km): ≧ 1400 kg

The first launch of Epsilon S is planned in 2023.

On July 14, 2023, the second stage of Epsilon S failed during a test firing.

Launch statistics

Launch outcomes

1
2013
'14
'15
'16
'17
'18
'19
2020
'21
'22
  • Failure
  • Partial failure
  • Success
  • Planned

Launch history

Epsilon launch vehicles are launched from a pad at the Uchinoura Space Center previously used by Mu launch vehicles. The maiden flight, carrying the SPRINT-A scientific satellite, lifted off at 05:00 UTC (14:00 JST) on 14 September 2013. The launch was conducted at a cost of US$38 million.

On 27 August 2013, the first planned launch of the launch vehicle had to be aborted 19 seconds before liftoff because of a botched data transmission. A ground-based computer had tried to receive data from the launch vehicle 0.07 seconds before the information was actually transmitted.

The initial version of Epsilon has a payload capacity to low Earth orbit of up to 500 kilograms, with the operational version expected to be able to place 1,200 kg (2,600 lb) into a 250 by 500 km (160 by 310 mi) orbit, or 700 kg (1,500 lb) to a circular orbit at 500 km (310 mi) with the aid of a hydrazine fueled stage.

Flight No. Date / time (UTC) Rocket,
Configuration
Launch site Payload Payload mass Orbit Customer Launch
outcome
1 14 September 2013
05:00:00
Epsilon 4 Stages Uchinoura Space Center SPRINT-A (HISAKI) 340 kg LEO JAXA Success
Demonstration Flight
2 20 December 2016
11:00:00
Epsilon 3 Stages Uchinoura Space Center ERG (ARASE) 350 kg Geocentric JAXA Success
3 17 January 2018
21:06:11
Epsilon 4 Stages Uchinoura Space Center ASNARO-2 570 kg SSO Japan Space Systems Success
4 18 January 2019
00:50:20
Epsilon 4 Stages Uchinoura Space Center RAPIS-1
MicroDragon
RISESAT
ALE-1
OrigamiSat-1
AOBA-VELOX-IV
NEXUS
200 kg SSO JAXA Success
Innovative Satellite Technology Demonstration-1; component demonstration and technology validation.
5 9 November 2021
00:55:16
Epsilon PBS Uchinoura Space Center RAISE-2
HIBARI
Z-Sat
DRUMS
TeikyoSat-4
ASTERISC
ARICA
NanoDragon
KOSEN-1
110 kg SSO JAXA Success
Innovative Satellite Technology Demonstration-2.
6 12 October 2022
00:50:00
Epsilon 4 Stages Uchinoura Space Center RAISE-3
QPS-SAR 3
QPS-SAR 4
MAGNARO
MITSUBA
KOSEN-2
WASEDA-SAT-ZERO
FSI-SAT
110 kg SSO JAXA, iQPS Failure
RAISE-3 and the six CubeSats were part of Innovative Satellite Technology Demonstration-3. QPS-SAR 3/4 were Epsilon's first commercial satellites launch contracts. Vehicle was destroyed by flight termination system shortly after second stage cutoff due to an attitude control fault.

Planned launches

Date / time (UTC) Rocket,
Configuration
Launch site Payload Orbit Customer
2024 Epsilon S Uchinoura Space Center LOTUSat-1 SSO VNSC
2025 Epsilon S Uchinoura Space Center Innovative Satellite Technology Demonstration-4 LEO JAXA
2025 Epsilon S Uchinoura Space Center DESTINY+ Heliocentric JAXA
2027 Epsilon S Uchinoura Space Center Innovative Satellite Technology Demonstration-5 LEO JAXA
July 2028 Epsilon S Uchinoura Space Center Solar-C EUVST SSO JAXA
2028 Epsilon S Uchinoura Space Center JASMINE SSO JAXA
2029 Epsilon S Uchinoura Space Center Innovative Satellite Technology Demonstration-6 LEO JAXA
2030 Epsilon S Uchinoura Space Center HiZ-GUNDAM SSO JAXA
2031 Epsilon S Uchinoura Space Center Innovative Satellite Technology Demonstration-7 LEO JAXA

Sources: Japanese Cabinet

Internet data leak

In November 2012, JAXA reported that there had been a possible leak of rocket data due to a computer virus. JAXA had previously been a victim of cyber-attacks, possibly for espionage purposes. Solid-fuel rocket data potentially has military value, and Epsilon is considered as potentially adaptable to an intercontinental ballistic missile. The Japan Aerospace Exploration Agency removed the infected computer from its network, and said its M-V rocket and H-IIA and H-IIB rockets may have been compromised.

See also


This page was last updated at 2024-02-26 04:43 UTC. Update now. View original page.

All our content comes from Wikipedia and under the Creative Commons Attribution-ShareAlike License.


Top

If mathematical, chemical, physical and other formulas are not displayed correctly on this page, please useFirefox or Safari