Lead(II) chloride

Lead(II) chloride
Lead(II) chloride

The crystal structure of PbCl2, in the unconventional crystallographic setting Pnam. This corresponds to the standard Pnma setting by switching the labels on the b and c axes.
Names
IUPAC names
Lead(II) chloride
Lead dichloride
Other names
Plumbous chloride
Cotunnite
Dichloroplumbylene
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.028.950 Edit this at Wikidata
EC Number
  • 231-845-5
UNII
  • InChI=1S/2ClH.Pb/h2*1H;/q;;+2/p-2 checkY
    Key: HWSZZLVAJGOAAY-UHFFFAOYSA-L checkY
  • Cl[Pb]Cl
Properties
PbCl2
Molar mass 278.10 g/mol
Appearance white odorless solid
Density 5.85 g/cm3
Melting point 501 °C (934 °F; 774 K)
Boiling point 950 °C (1,740 °F; 1,220 K)
0.99 g/100 mL (20 °C)
1.7×10−5 (20 °C)
Solubility slightly soluble in dilute HCl, ammonia;
insoluble in alcohol

Soluble in hot water as well as in presence of alkali hydroxide

Soluble in concentrated HCl (>6M)

−73.8·10−6 cm3/mol
2.199
Structure
Orthorhombic, oP12
Pnma (No. 62)
a = 762.040 pm, b = 453.420 pm, c = 904.520 pm
4
Thermochemistry
135.98 JK−1mol−1
-359.41 kJ/mol
Hazards
GHS labelling:
GHS07: Exclamation markGHS08: Health hazardGHS09: Environmental hazard
Danger
H302, H332, H351, H360, H372, H410
P201, P261, P273, P304+P340, P308+P313, P312, P391
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3
0
0
Lethal dose or concentration (LD, LC):
140 mg/kg (guinea pig, oral)
Related compounds
Other anions
Lead(II) fluoride
Lead(II) bromide
Lead(II) iodide
Other cations
Lead(IV) chloride
Tin(II) chloride
Germanium(II) chloride
Related compounds
Thallium(I) chloride
Bismuth chloride
Supplementary data page
Lead(II) chloride (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Infobox references

Lead(II) chloride (PbCl2) is an inorganic compound which is a white solid under ambient conditions. It is poorly soluble in water. Lead(II) chloride is one of the most important lead-based reagents. It also occurs naturally in the form of the mineral cotunnite.

Structure and properties

In solid PbCl2, each lead ion is coordinated by nine chloride ions in a tricapped triangular prism formation — six lie at the vertices of a triangular prism and three lie beyond the centers of each rectangular prism face. The 9 chloride ions are not equidistant from the central lead atom, 7 lie at 280–309 pm and 2 at 370 pm. PbCl2 forms white orthorhombic needles.

In the gas phase, PbCl2 molecules have a bent structure with the Cl–Pb–Cl angle being 98° and each Pb–-Cl bond distance being 2.44 Å. Such PbCl2 is emitted from internal combustion engines that use ethylene chloride-tetraethyllead additives for antiknock purposes.

PbCl2 is sparingly soluble in water, solubility product Ksp = 1.7×10−5 at 20 °C. It is one of only 5 commonly water-insoluble chlorides, the other 4 being thallium(I) chloride, silver chloride (AgCl) with Ksp = 1.8×10−10, copper(I) chloride (CuCl) with Ksp = 1.72×10−7 and mercury(I) chloride (Hg2Cl2) with Ksp = 1.3×10−18.

Synthesis

Solid lead(II) chloride precipitates upon addition of aqueous chloride sources (HCl, NaCl, KCl) to aqueous solutions of lead(II) compounds, such as lead(II) nitrate and lead(II) acetate:

Pb(NO3)2 + 2 HCl → PbCl2(s) + 2 HNO3

It also forms by treatment of basic lead(II) compounds such as **Lead(II) oxide and lead(II) carbonate.

Lead dioxide is reduced by chloride as follows:

PbO2 + 4 HCl → PbCl2(s) + Cl2 + 2 H2O

It also formed by the oxidation of lead metal by copper(II) chloride:

Pb + CuCl2 → PbCl2 + Cu

Or most straightforwardly by the action of chlorine gas on lead metal:

Pb + Cl2 → PbCl2

Reactions

Addition of chloride ions to a suspension of PbCl2 gives rise to soluble complex ions. In these reactions the additional chloride (or other ligands) break up the chloride bridges that comprise the polymeric framework of solid PbCl2(s).

PbCl2(s) + Cl → [PbCl3](aq)
PbCl2(s) + 2 Cl → [PbCl4]2−(aq)

PbCl2 reacts with molten NaNO2 to give PbO:

PbCl2(l) + 3 NaNO2 → PbO + NaNO3 + 2 NO + 2 NaCl

PbCl2 is used in synthesis of lead(IV) chloride (PbCl4): Cl2 is bubbled through a saturated solution of PbCl2 in aqueous NH4Cl forming [NH4]2[PbCl6]. The latter is reacted with cold concentrated sulfuric acid (H2SO4) forming PbCl4 as an oil.

Lead(II) chloride is the main precursor for organometallic derivatives of lead, such as plumbocenes. The usual alkylating agents are employed, including Grignard reagents and organolithium compounds:

2 PbCl2 + 4 RLi → R4Pb + 4 LiCl + Pb
2 PbCl2 + 4 RMgBr → R4Pb + Pb + 4 MgBrCl
3 PbCl2 + 6 RMgBr → R3Pb-PbR3 + Pb + 6 MgBrCl

These reactions produce derivatives that are more similar to organosilicon compounds, i.e. that Pb(II) tends to disproportionate upon alkylation.

PbCl2 can be used to produce PbO2 by treating it with sodium hypochlorite (NaClO), forming a reddish-brown precipitate of PbO2.

Uses

  • Molten PbCl2 is used in the synthesis of lead titanate and barium lead titanate ceramics by cation replacement reactions:
    x PbCl2(l) + BaTiO3(s) → Ba1−xPbxTiO3 + x BaCl2
  • PbCl2 is used in production of infrared transmitting glass, and ornamental glass called aurene glass. Aurene glass has an iridescent surface formed by spraying with PbCl2 and reheating under controlled conditions. Stannous chloride (SnCl2) is used for the same purpose.
  • Pb is used in HCl service even though the PbCl2 formed is slightly soluble in HCl. Addition of 6–25% of antimony (Sb) increases corrosion resistance.
  • A basic chloride of lead, PbCl2·Pb(OH)2, is known as Pattinson's white lead and is used as pigment in white paint. Lead paint is now banned as a health hazard in many countries by the White Lead (Painting) Convention, 1921.
  • PbCl2 is an intermediate in refining bismuth (Bi) ore. The ore containing Bi, Pb, and Zn is first treated with molten caustic soda to remove traces of arsenic and tellurium. This is followed by the Parkes process to remove any silver and gold present. There are now Bi, Pb, and Zn in the ore. At 500 °C, it receives treatment from Cl2 gas. First, ZnCl2 forms and is excreted. Pure Bi is left behind after PbCl2 forms and is eliminated. Lastly, BiCl3 would form.

Toxicity

Like other soluble lead compounds, exposure to PbCl2 may cause lead poisoning.


This page was last updated at 2024-03-28 13:15 UTC. Update now. View original page.

All our content comes from Wikipedia and under the Creative Commons Attribution-ShareAlike License.


Top

If mathematical, chemical, physical and other formulas are not displayed correctly on this page, please useFirefox or Safari