List of gravitationally rounded objects of the Solar System

This is a list of most likely gravitationally rounded objects (GRO) of the Solar System, which are objects that have a rounded, ellipsoidal shape due to their own gravity (but are not necessarily in hydrostatic equilibrium). Apart from the Sun itself, these objects qualify as planets according to common geophysical definitions of that term. The sizes of these objects range over three orders of magnitude in radius, from planetary-mass objects like dwarf planets and some moons to the planets and the Sun. This list does not include small Solar System bodies, but it does include a sample of possible planetary-mass objects whose shapes have yet to be determined. The Sun's orbital characteristics are listed in relation to the Galactic Center, while all other objects are listed in order of their distance from the Sun.

Star

The Sun is a G-type main-sequence star. It contains almost 99.9% of all the mass in the Solar System.

Sun
Symbol (image)
Symbol (Unicode)
Discovery year Prehistoric
Mean distance
from the Galactic Center
km
light years
≈ 2.5×1017
≈ 26,000
Mean radius km
:E
695,508
109.3
Surface area km2
:E
6.0877×1012
11,990
Volume km3
:E
1.4122×1018
1,300,000
Mass kg
:E
1.9855×1030
332,978.9
Gravitational parameter m3/s2 1.327×1020
Density g/cm3 1.409
Equatorial gravity m/s2
g
274.0
27.94
Escape velocity km/s 617.7
Rotation period days 25.38
Orbital period about Galactic Center million years 225–250
Mean orbital speed km/s ≈ 220
Axial tilt to the ecliptic deg. 7.25
Axial tilt to the galactic plane deg. 67.23
Mean surface temperature K 5,778
Mean coronal temperature K 1–2×106
Photospheric composition HHeOCFeS

Planets

In 2006, the International Astronomical Union (IAU) defined a planet as a body in orbit around the Sun that was large enough to have achieved hydrostatic equilibrium and to have "cleared the neighbourhood around its orbit". The practical meaning of "cleared the neighborhood" is that a planet is comparatively massive enough for its gravitation to control the orbits of all objects in its vicinity. In practice, the term "hydrostatic equilibrium" is interpreted loosely. Mercury is round but not actually in hydrostatic equilibrium, but it is universally regarded as a planet nonetheless.

According to the IAU's explicit count, there are eight planets in the Solar System; four terrestrial planets (Mercury, Venus, Earth, and Mars) and four giant planets, which can be divided further into two gas giants (Jupiter and Saturn) and two ice giants (Uranus and Neptune). When excluding the Sun, the four giant planets account for more than 99% of the mass of the Solar System.

Key
* Terrestrial planet
° Gas giant
× Ice giant
  *Mercury *Venus *Earth *Mars °Jupiter °Saturn ×Uranus ×Neptune
 
Symbol or
Symbol (Unicode) 🜨 ⛢ or ♅
Discovery year Prehistoric Prehistoric Prehistoric Prehistoric Prehistoric Prehistoric 1781 1846
Mean distance
from the Sun
km
AU
57,909,175
0.38709893
108,208,930
0.72333199
149,597,890
1.00000011
227,936,640
1.52366231
778,412,010
5.20336301
1,426,725,400
9.53707032
2,870,972,200
19.19126393
4,498,252,900
30.06896348
Equatorial radius km
:E
2,440.53
0.3826
6,051.8
0.9488
6,378.1366
1
3,396.19
0.53247
71,492
11.209
60,268
9.449
25,559
4.007
24,764
3.883
Surface area km2
:E
75,000,000
0.1471
460,000,000
0.9020
510,000,000
1
140,000,000
0.2745
64,000,000,000
125.5
44,000,000,000
86.27
8,100,000,000
15.88
7,700,000,000
15.10
Volume km3
:E
6.083×1010
0.056
9.28×1011
0.857
1.083×1012
1
1.6318×1011
0.151
1.431×1015
1,321.3
8.27×1014
763.62
6.834×1013
63.102
6.254×1013
57.747
Mass kg
:E
3.302×1023
0.055
4.8690×1024
0.815
5.972×1024
1
6.4191×1023
0.107
1.8987×1027
318
5.6851×1026
95
8.6849×1025
14.5
1.0244×1026
17
Gravitational parameter m3/s2 2.203×1013 3.249×1014 3.986×1014 4.283×1013 1.267×1017 3.793×1016 5.794×1015 6.837×1015
Density g/cm3 5.43 5.24 5.52 3.940 1.33 0.70 1.30 1.76
Equatorial gravity m/s2
g
3.70
0.377
8.87
0.904
9.8
1.00
3.71
0.378
24.79
2.528
10.44
1.065
8.87
0.904
11.15
1.137
Escape velocity km/s 4.25 10.36 11.18 5.02 59.54 35.49 21.29 23.71
Rotation period days 58.646225 243.0187 0.99726968 1.02595675 0.41354 0.44401 0.71833 0.67125
Orbital period days
years
87.969
0.2408467
224.701
0.61519726
365.256363
1.0000174
686.971
1.8808476
4,332.59
11.862615
10,759.22
29.447498
30,688.5
84.016846
60,182
164.79132
Mean orbital speed km/s 47.8725 35.0214 29.7859 24.1309 13.0697 9.6724 6.8352 5.4778
Eccentricity 0.20563069 0.00677323 0.01671022 0.09341233 0.04839266 0.05415060 0.04716771 0.00858587
Inclination deg. 7.00 3.39 0 1.85 1.31 2.48 0.76 1.77
Axial tilt deg. 0.0 177.3 23.44 25.19 3.12 26.73 97.86 28.32
Mean surface temperature K 440–100 730 287 227 152 134 76 73
Mean air temperature K 288 165 135 76 73
Atmospheric composition HeNa+
K+ 
CO2N2, SO2 N2O2, Ar, CO2 CO2, N2
Ar
H2, He H2, He H2, He
CH4
H2, He
CH4
Number of known moons 0 0 1 2 95 146 27 14
Rings? No No No No Yes Yes Yes Yes
Planetary discriminant 9.1×104 1.35×106 1.7×106 1.8×105 6.25×105 1.9×105 2.9×104 2.4×104

Dwarf planets

Dwarf planets are bodies orbiting the Sun that are massive and warm enough to have achieved hydrostatic equilibrium, but have not cleared their neighbourhoods of similar objects. Since 2008, there have been five dwarf planets recognized by the IAU, although only Pluto has actually been confirmed to be in hydrostatic equilibrium (Ceres is close to equilibrium, though some anomalies remain unexplained). Ceres orbits in the asteroid belt, between Mars and Jupiter. The others all orbit beyond Neptune.

Key
Asteroid belt
Kuiper belt
§ Scattered disc
× Sednoid
Ceres Pluto Haumea Makemake §Eris
Symbol or
Symbol (Unicode) ♇ or ⯓ 🝻 🝼
Minor planet number 1 134340 136108 136472 136199
Discovery year 1801 1930 2004 2005 2005
Mean distance
from the Sun
km
AU
413,700,000
2.766
5,906,380,000
39.482
6,484,000,000
43.335
6,850,000,000
45.792
10,210,000,000
67.668
Mean radius km
:E
473
0.0742
1,188.3
0.186
816
(2100 × 1680 × 1074)
0.13
715
0.11
1,163
0.18
Volume km3
:E
4.21×108
0.00039
6.99×109
0.0065
1.98×109
0.0018
1.7×109
0.0016
6.59×109
0.0061
Surface area km2
:E
2,770,000
0.0054
17,700,000
0.035
8,140,000
0.016
6,900,000
0.0135
17,000,000
0.0333
Mass kg
:E
9.39×1020
0.00016
1.30×1022
0.0022
4.01 ± 0.04×1021
0.0007
≈ 3.1×1021
0.0005
1.65×1022
0.0028
Gravitational parameter m3/s2 6.263 × 1010 8.710 × 1011 2.674 × 1011 2.069 × 1011 1.108 × 1012
Density g/cm3 2.16 1.87 2.02 2.03 2.43
Equatorial gravity m/s2
g
0.27
0.028
0.62
0.063
0.63
0.064
0.40
0.041
0.82
0.084
Escape velocity km/s 0.51 1.21 0.91 0.54 1.37
Rotation period days 0.3781 6.3872 0.1631 0.9511 15.7859
Orbital period years 4.599 247.9 283.8 306.2 559
Mean orbital speed km/s 17.882 4.75 4.48 4.40 3.44
Eccentricity 0.080 0.249 0.195 0.161 0.436
Inclination deg. 10.59 17.14 28.21 28.98 44.04
Axial tilt deg. 4 119.6 ≈ 126 ? ≈ 78
Mean surface temperature K 167 40 <50 30 30
Atmospheric composition H2O N2, CH4, CO ? N2, CH4 N2, CH4
Number of known moons 0 5 2 1 1
Rings? No No Yes ? ?
Planetary discriminant 0.33 0.077 0.023 0.02 0.10

Astronomers usually refer to solid bodies such as Ceres as dwarf planets, even if they are not strictly in hydrostatic equilibrium. They generally agree that several other trans-Neptunian objects (TNOs) may be large enough to be dwarf planets, given current uncertainties. However, there has been disagreement on the required size. Early speculations were based on the small moons of the giant planets, which attain roundness around a threshold of 200 km radius. However, these moons are at higher temperatures than TNOs and are icier than TNOs are likely to be. Estimates from an IAU question-and-answer press release from 2006, giving 400 km radius and 0.5×1021 kg mass as cut-offs that normally would be enough for hydrostatic equilibrium, while stating that observation would be needed to determine the status of borderline cases. Many TNOs in the 200–500 km radius range are dark and low-density bodies, which suggests that they retain internal porosity from their formation, and hence are not planetary bodies (as planetary bodies have sufficient gravitation to collapse out such porosity).

In 2023, Emery et al. wrote that near-infrared spectroscopy by the James Webb Space Telescope (JWST) in 2022 suggests that Sedna, Gonggong, and Quaoar underwent internal melting, differentiation, and chemical evolution, like the larger dwarf planets Pluto, Eris, Haumea, and Makemake, but unlike "all smaller KBOs". This is because light hydrocarbons are present on their surfaces (e.g. ethane, acetylene, and ethylene), which implies that methane is continuously being resupplied, and that methane would likely come from internal geochemistry. On the other hand, the surfaces of Sedna, Gonggong, and Quaoar have low abundances of CO and CO2, similar to Pluto, Eris, and Makemake, but in contrast to smaller bodies. This suggests that the threshold for dwarf planethood in the trans-Neptunian region is around 500 km radius. The table below gives Sedna, Gonggong, and Quaoar as additional consensus dwarf planets; slightly smaller Orcus and Salacia, which are larger than 400 km radius, have been included as borderline cases for comparison.

Orcus Salacia Quaoar §Gonggong ×Sedna
Symbol
Symbol (Unicode) 🝿 🝾 🝽
Minor-planet number 90482 120347 50000 225088 90377
Discovery year 2004 2004 2002 2007 2003
Semi-major axis km
AU
5,896,946,000
39.419
6,310,600,000
42.18
6,535,930,000
43.69
10,072,433,340
67.33
78,668,000,000
525.86
Mean radius km
:E
458.5
0.0720
423
0.0664
555
0.0871
615
0.0982
497.5
0.0780
Surface area km2
:E
2,641,700
0.005179
2,248,500
0.004408
3,870,800
0.007589
4,932,300
0.009671
3,110,200
0.006098
Volume km3
:E
403,744,500
0.000373
317,036,800
0.000396
716,089,900
0.000661
1,030,034,600
0.000951
515,784,000
0.000476
Mass kg
:E
5.48×1020
0.0001
4.9×1020
0.0001
1.20×1021
0.0002
1.75×1021
0.0003
?
Density g/cm3 1.4±0.2 1.50±0.12 1.7 1.74±0.16 ?
Equatorial gravity m/s2
g
0.17
0.017
0.18
0.018
0.25
0.025
0.31
0.029
?
Escape velocity km/s 0.41 0.39 0.53 0.62 ?
Rotation period days 9.54? ? 0.7367 0.9333 0.4280
Orbital period years 247.49 273.98 287.97 552.52 12,059
Mean orbital speed km/s 4.68 4.57 4.52 3.63 1.04
Eccentricity 0.226 0.106 0.038 0.506 0.855
Inclination deg. 20.59 23.92 7.99 30.74 11.93
Axial tilt deg. ? ? 13.6 or 14.0 ? ?
Mean surface temperature K ≈ 42 ≈ 43 ≈ 41 ≈ 30 ≈ 12
Number of known moons 1 1 1 1 0
Rings? ? ? Yes ? ?
Planetary discriminant 0.003 <0.1 0.0015 <0.1 ?
Absolute magnitude (H) 2.3 4.1 2.71 1.8 1.5

As for objects in the asteroid belt, none are generally agreed as dwarf planets today among astronomers other than Ceres. The second- through fifth-largest asteroids have been discussed as candidates. Vesta (radius 262.7±0.1 km), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today. Pallas (radius 255.5±2 km), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape. Vesta and Pallas are nonetheless sometimes considered small terrestrial planets anyway by sources preferring a geophysical definition, because they do share similarities to the rocky planets of the inner solar system. The fourth-largest asteroid, Hygiea (radius 216.5±4 km), is icy. The question remains open if it is currently in hydrostatic equilibrium: while Hygiea is round today, it was probably previously catastrophically disrupted and today might be just a gravitational aggregate of the pieces. The fifth-largest asteroid, Interamnia (radius 166±3 km), is icy and has a shape consistent with hydrostatic equilibrium for a slightly shorter rotation period than it now has.

Satellites

There are at least 19 natural satellites in the Solar System that are known to be massive enough to be close to hydrostatic equilibrium: seven of Saturn, five of Uranus, four of Jupiter, and one each of Earth, Neptune, and Pluto. Alan Stern calls these satellite planets, although the term major moon is more common. The smallest natural satellite that is gravitationally rounded is Saturn I Mimas (radius 198.2±0.4 km). This is smaller than the largest natural satellite that is known not to be gravitationally rounded, Neptune VIII Proteus (radius 210±7 km).

Several of these were once in equilibrium but are no longer: these include Earth's moon and all of the moons listed for Saturn apart from Titan and Rhea. The status of Callisto, Titan, and Rhea is uncertain, as is that of the moons of Uranus, Pluto and Eris. The other large moons (Io, Europa, Ganymede, and Triton) are generally believed to still be in equilibrium today. Other moons that were once in equilibrium but are no longer very round, such as Saturn IX Phoebe (radius 106.5±0.7 km), are not included. In addition to not being in equilibrium, Mimas and Tethys have very low densities and it has been suggested that they may have non-negligible internal porosity, in which case they would not be satellite planets.

The moons of the trans-Neptunian objects (other than Charon) have not been included, because they appear to follow the normal situation for TNOs rather than the moons of Saturn and Uranus, and become solid at a larger size (900–1000 km diameter, rather than 400 km as for the moons of Saturn and Uranus). Eris I Dysnomia and Orcus I Vanth, though larger than Mimas, are dark bodies in the size range that should allow for internal porosity, and in the case of Dysnomia a low density is known.

Satellites are listed first in order from the Sun, and second in order from their parent body. For the round moons, this mostly matches the Roman numeral designations, with the exceptions of Iapetus and the Uranian system. This is because the Roman numeral designations originally reflected distance from the parent planet and were updated for each new discovery until 1851, but by 1892, the numbering system for the then-known satellites had become "frozen" and from then on followed order of discovery. Thus Miranda (discovered 1948) is Uranus V despite being the innermost of Uranus' five round satellites. The missing Saturn VII is Hyperion, which is not large enough to be round (mean radius 135±4 km).

Key
🜨 Satellite of Earth
Satellite of Jupiter
Satellite of Saturn
Satellite of Uranus
Satellite of Neptune
Satellite of Pluto
🜨Moon Io Europa Ganymede Callisto Mimas Enceladus Tethys Dione Rhea
Roman numeral designation Earth I Jupiter I Jupiter II Jupiter III Jupiter IV Saturn I Saturn II Saturn III Saturn IV Saturn V
Symbol ☾ JI JII JIII JIV SI SII SIII SIV SV
Symbol (Unicode)
Discovery year Prehistoric 1610 1610 1610 1610 1789 1789 1684 1684 1672
Mean distance
from primary
km 384,399 421,600 670,900 1,070,400 1,882,700 185,520 237,948 294,619 377,396 527,108
Mean radius km
:E
1,737.1
0.272
1,815
0.285
1,569
0.246
2,634.1
0.413
2,410.3
0.378
198.30
0.031
252.1
0.04
533
0.084
561.7
0.088
764.3
0.12
Surface area 1×106 km2 37.93 41.910 30.9 87.0 73 0.49 0.799 3.57 3.965 7.337
Volume 1×109 km3 22 25.3 15.9 76 59 0.033 0.067 0.63 0.8 1.9
Mass 1×1022 kg 7.3477 8.94 4.80 14.819 10.758 0.00375 0.0108 0.06174 0.1095 0.2306
Density g/cm3 3.3464 3.528 3.01 1.936 1.83 1.15 1.61 0.98 1.48 1.23
Equatorial gravity m/s2
g
1.622
0.1654
1.796
0.1831
1.314
0.1340
1.428
0.1456
1.235
0.1259
0.0636
0.00649
0.111
0.0113
0.145
0.0148
0.231
0.0236
0.264
0.0269
Escape velocity km/s 2.38 2.56 2.025 2.741 2.440 0.159 0.239 0.393 0.510 0.635
Rotation period days 27.321582
(sync)
1.7691378
(sync)
3.551181
(sync)
7.154553
(sync)
16.68902
(sync)
0.942422
(sync)
1.370218
(sync)
1.887802
(sync)
2.736915
(sync)
4.518212
(sync)
Orbital period about primary days 27.32158 1.769138 3.551181 7.154553 16.68902 0.942422 1.370218 1.887802 2.736915 4.518212
Mean orbital speed km/s 1.022 17.34 13.740 10.880 8.204 14.32 12.63 11.35 10.03 8.48
Eccentricity 0.0549 0.0041 0.009 0.0013 0.0074 0.0202 0.0047 0.02 0.002 0.001
Inclination to primary's equator deg. 18.29–28.58 0.04 0.47 1.85 0.2 1.51 0.02 1.51 0.019 0.345
Axial tilt deg. 6.68 0.000405
± 0.00076
0.0965
± 0.0069
0.155
± 0.065
≈ 0–2 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
Mean surface temperature K 220 130 102 110 134 64 75 64 87 76
Atmospheric composition ArHe
NaKH
SO2 O2 O2 O2CO2 H2O, N2
CO2, CH4
Titan Iapetus Miranda Ariel Umbriel Titania Oberon Triton Charon
Roman numeral designation Saturn VI Saturn VIII Uranus V Uranus I Uranus II Uranus III Uranus IV Neptune I Pluto I
Symbol SVI SVIII UV UI UII UIII UIV NI PI
Discovery year 1655 1671 1948 1851 1851 1787 1787 1846 1978
Mean distance
from primary
km 1,221,870 3,560,820 129,390 190,900 266,000 436,300 583,519 354,759 17,536
Mean radius km
:E
2,576
0.404
735.60
0.115
235.8
0.037
578.9
0.091
584.7
0.092
788.9
0.124
761.4
0.119
1,353.4
0.212
603.5
0.095
Surface area 1×106 km2 83.0 6.7 0.70 4.211 4.296 7.82 7.285 23.018 4.580
Volume 1×109 km3 71.6 1.67 0.055 0.81 0.84 2.06 1.85 10 0.92
Mass 1×1022 kg 13.452 0.18053 0.00659 0.135 0.12 0.35 0.3014 2.14 0.152
Density g/cm3 1.88 1.08 1.20 1.67 1.40 1.72 1.63 2.061 1.65
Equatorial gravity m/s2
g
1.35
0.138
0.22
0.022
0.08
0.008
0.27
0.028
0.23
0.023
0.39
0.040
0.35
0.036
0.78
0.080
0.28
0.029
Escape velocity km/s 2.64 0.57 0.19 0.56 0.52 0.77 0.73 1.46 0.58
Rotation period days 15.945
(sync)
79.322
(sync)
1.414
(sync)
2.52
(sync)
4.144
(sync)
8.706
(sync)
13.46
(sync)
5.877
(sync)
6.387
(sync)
Orbital period about primary days 15.945 79.322 1.4135 2.520 4.144 8.706 13.46 5.877 6.387
Mean orbital speed km/s 5.57 3.265 6.657 5.50898 4.66797 3.644 3.152 4.39 0.2
Eccentricity 0.0288 0.0286 0.0013 0.0012 0.005 0.0011 0.0014 0.00002 0.0022
Inclination to primary's equator deg. 0.33 14.72 4.22 0.31 0.36 0.14 0.10 157 0.001
Axial tilt deg. ≈ 0.3 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0.7 ≈ 0
Mean surface temperature K 93.7 130 59 58 61 60 61 38 53
Atmospheric composition N2, CH4 N2, CH4

See also


This page was last updated at 2024-01-31 10:03 UTC. Update now. View original page.

All our content comes from Wikipedia and under the Creative Commons Attribution-ShareAlike License.


Top

If mathematical, chemical, physical and other formulas are not displayed correctly on this page, please useFirefox or Safari