# Latin letters used in mathematics, science, and engineering(Redirected from List of mathematical uses of Latin letters)

Many letters of the Latin alphabet, both capital and small, are used in mathematics, science, and engineering to denote by convention specific or abstracted constants, variables of a certain type, units, multipliers, or physical entities. Certain letters, when combined with special formatting, take on special meaning.

Below is an alphabetical list of the letters of the alphabet with some of their uses. The field in which the convention applies is mathematics unless otherwise noted.

## Typographical variation

Some common conventions:

Typographical variations of Latin letters in Unicode
Name Sub-type Alphabet
Double-struck Mathematical ๐ธ ๐น โ ๐ป ๐ผ ๐ฝ ๐พ โ ๐ ๐ ๐ ๐ ๐ โ ๐ โ โ โ ๐ ๐ ๐ ๐ ๐ ๐ ๐ โค
๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐  ๐ก ๐ข ๐ฃ ๐ค ๐ฅ ๐ฆ ๐ง ๐จ ๐ฉ ๐ช ๐ซ
Italic โ โ โ โ โ
Script/Calligraphy Mathematical ๐ โฌ ๐ ๐ โฐ โฑ ๐ข โ โ ๐ฅ ๐ฆ โ โณ ๐ฉ ๐ช ๐ซ ๐ฌ โ ๐ฎ ๐ฏ ๐ฐ ๐ฑ ๐ฒ ๐ณ ๐ด ๐ต
๐ถ ๐ท ๐ธ ๐น โฏ ๐ป โ ๐ฝ ๐พ ๐ฟ ๐ ๐ ๐ ๐ โด ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐
Mathematical Bold ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐  ๐ก ๐ข ๐ฃ ๐ค ๐ฅ ๐ฆ ๐ง ๐จ ๐ฉ
๐ช ๐ซ ๐ฌ ๐ญ ๐ฎ ๐ฏ ๐ฐ ๐ฑ ๐ฒ ๐ณ ๐ด ๐ต ๐ถ ๐ท ๐ธ ๐น ๐บ ๐ป ๐ผ ๐ฝ ๐พ ๐ฟ ๐ ๐ ๐ ๐
Fraktur Mathematical ๐ ๐ โญ ๐ ๐ ๐ ๐ โ โ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ โ ๐ ๐ ๐ ๐ ๐ ๐ ๐ โจ
๐ ๐ ๐  ๐ก ๐ข ๐ฃ ๐ค ๐ฅ ๐ฆ ๐ง ๐จ ๐ฉ ๐ช ๐ซ ๐ฌ ๐ญ ๐ฎ ๐ฏ ๐ฐ ๐ฑ ๐ฒ ๐ณ ๐ด ๐ต ๐ถ ๐ท
Mathematical Bold ๐ฌ ๐ญ ๐ฎ ๐ฏ ๐ฐ ๐ฑ ๐ฒ ๐ณ ๐ด ๐ต ๐ถ ๐ท ๐ธ ๐น ๐บ ๐ป ๐ผ ๐ฝ ๐พ ๐ฟ ๐ ๐ ๐ ๐ ๐ ๐
๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐
Mono-space Mathematical ๐ฐ ๐ฑ ๐ฒ ๐ณ ๐ด ๐ต ๐ถ ๐ท ๐ธ ๐น ๐บ ๐ป ๐ผ ๐ฝ ๐พ ๐ฟ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐
๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐  ๐ก ๐ข ๐ฃ

## Bb

• B represents:
• the digit "11" in hexadecimal and other positional numeral systems with a radix of 12 or greater
• the second point of a triangle
• a ball (also denoted by โฌ (${\displaystyle {\mathcal {B}}}$) or ${\displaystyle \mathbb {B} }$)
• a basis of a vector space or of a filter (both also denoted by โฌ (${\displaystyle {\mathcal {B}}}$))
• in econometrics and time-series statistics it is often used for the backshift or lag operator, the formal parameter of the lag polynomial
• the magnetic field, denoted ${\displaystyle {\textbf {B}}}$ or ${\displaystyle {\vec {B}}}$
• B with various subscripts represents several variations of Brun's constant and Betti numbers; it can also be used to mean the Bernoulli numbers.
• b represents:

## Ee

• E represents:
• the digit "14" in hexadecimal and other positional numeral systems with a radix of 15 or greater
• an exponent in decimal numbers. For example, 1.2E3 is 1.2ร103 or 1200
• the set of edges in a graph or matroid
• the unit prefix exa (1018)
• energy in physics
• electric field denoted ${\displaystyle {\textbf {E}}}$ or ${\displaystyle {\vec {E}}}$
• electromotive force (denoted ${\displaystyle {\mathcal {E}}}$ and measured in volts), refers to voltage
• an event (as in P(E), which reads "the probability P of event E occurring")
• in statistics, the expected value of a random variable, sometimes as ${\displaystyle \mathbb {E} }$
• Ek represents kinetic energy
• (Arrhenius) activation energy, denoted Ea or EA
• ionization energy, denoted Ei
• electron affinity, denoted Eea
• dissociation energy, denoted Ed
• e represents:
• Euler's number, a transcendental number equal to 2.71828182845... which is used as the base for natural logarithms
• a vector of unit length, especially in the direction of one of the coordinates axes
• the elementary charge in physics
• an electron, usually denoted eโ to distinguish against a positron e+
• the eccentricity of a conic section
• the identity element in a group
• In a cartesian coordinate system, a unit vector in notations like ${\displaystyle (\mathbf {\hat {e}} _{x},\mathbf {\hat {e}} _{y},\mathbf {\hat {e}} _{z})}$, or ${\displaystyle (\mathbf {\hat {e}} _{1},\mathbf {\hat {e}} _{2},\mathbf {\hat {e}} _{3})}$

## Ii

• i represents:
• the imaginary unit, a complex number that is the square root of โ1
• Imaginary quaternion unit
• a subscript to denote the ith term (that is, a general term or index) in a sequence or list
• the index to the elements of a vector, written as a subscript after the vector name
• the index to the rows of a matrix, written as the first subscript after the matrix name
• an index of summation using the sigma notation
• the unit vector in Cartesian coordinates going in the x-direction, usually bold i

## Zz

This page was last updated at 2024-04-18 10:23 UTC. . View original page.

All our content comes from Wikipedia and under the Creative Commons Attribution-ShareAlike License.

Top

If mathematical, chemical, physical and other formulas are not displayed correctly on this page, please useFirefox or Safari