Noninertial reference frame
You can help expand this article with text translated from the corresponding article in Spanish. (September 2022) Click [show] for important translation instructions.

Part of a series on 
Classical mechanics 

A noninertial reference frame (also known as an accelerated reference frame) is a frame of reference that undergoes acceleration with respect to an inertial frame. An accelerometer at rest in a noninertial frame will, in general, detect a nonzero acceleration. While the laws of motion are the same in all inertial frames, in noninertial frames, they vary from frame to frame depending on the acceleration.
In classical mechanics it is often possible to explain the motion of bodies in noninertial reference frames by introducing additional fictitious forces (also called inertial forces, pseudoforces and d'Alembert forces) to Newton's second law. Common examples of this include the Coriolis force and the centrifugal force. In general, the expression for any fictitious force can be derived from the acceleration of the noninertial frame. As stated by Goodman and Warner, "One might say that F = ma holds in any coordinate system provided the term 'force' is redefined to include the socalled 'reversed effective forces' or 'inertia forces'."
In the theory of general relativity, the curvature of spacetime causes frames to be locally inertial, but globally noninertial. Due to the nonEuclidean geometry of curved spacetime, there are no global inertial reference frames in general relativity. More specifically, the fictitious force which appears in general relativity is the force of gravity.
Avoiding fictitious forces in calculations
In flat spacetime, the use of noninertial frames can be avoided if desired. Measurements with respect to noninertial reference frames can always be transformed to an inertial frame, incorporating directly the acceleration of the noninertial frame as that acceleration as seen from the inertial frame. This approach avoids use of fictitious forces (it is based on an inertial frame, where fictitious forces are absent, by definition) but it may be less convenient from an intuitive, observational, and even a calculational viewpoint. As pointed out by Ryder for the case of rotating frames as used in meteorology:
A simple way of dealing with this problem is, of course, to transform all coordinates to an inertial system. This is, however, sometimes inconvenient. Suppose, for example, we wish to calculate the movement of air masses in the earth's atmosphere due to pressure gradients. We need the results relative to the rotating frame, the earth, so it is better to stay within this coordinate system if possible. This can be achieved by introducing fictitious (or "nonexistent") forces which enable us to apply Newton's Laws of Motion in the same way as in an inertial frame.
— Peter Ryder, Classical Mechanics, pp. 7879
Detection of a noninertial frame: need for fictitious forces
That a given frame is noninertial can be detected by its need for fictitious forces to explain observed motions. For example, the rotation of the Earth can be observed using a Foucault pendulum. The rotation of the Earth seemingly causes the pendulum to change its plane of oscillation because the surroundings of the pendulum move with the Earth. As seen from an Earthbound (noninertial) frame of reference, the explanation of this apparent change in orientation requires the introduction of the fictitious Coriolis force.
Another famous example is that of the tension in the string between two spheres rotating about each other. In that case, prediction of the measured tension in the string based upon the motion of the spheres as observed from a rotating reference frame requires the rotating observers to introduce a fictitious centrifugal force.
In this connection, it may be noted that a change in coordinate system, for example, from Cartesian to polar, if implemented without any change in relative motion, does not cause the appearance of fictitious forces, despite the fact that the form of the laws of motion varies from one type of curvilinear coordinate system to another.
Fictitious forces in curvilinear coordinates
A different use of the term "fictitious force" often is used in curvilinear coordinates, particularly polar coordinates. To avoid confusion, this distracting ambiguity in terminologies is pointed out here. These socalled "forces" are nonzero in all frames of reference, inertial or noninertial, and do not transform as vectors under rotations and translations of the coordinates (as all Newtonian forces do, fictitious or otherwise).
This incompatible use of the term "fictitious force" is unrelated to noninertial frames. These socalled "forces" are defined by determining the acceleration of a particle within the curvilinear coordinate system, and then separating the simple doubletime derivatives of coordinates from the remaining terms. These remaining terms then are called "fictitious forces". More careful usage calls these terms "generalized fictitious forces" to indicate their connection to the generalized coordinates of Lagrangian mechanics. The application of Lagrangian methods to polar coordinates can be found here.
Relativistic point of view
Frames and flat spacetime
If a region of spacetime is declared to be Euclidean, and effectively free from obvious gravitational fields, then if an accelerated coordinate system is overlaid onto the same region, it can be said that a uniform fictitious field exists in the accelerated frame (we reserve the word gravitational for the case in which a mass is involved). An object accelerated to be stationary in the accelerated frame will "feel" the presence of the field, and they will also be able to see environmental matter with inertial states of motion (stars, galaxies, etc.) to be apparently falling "downwards" in the field along curved trajectories as if the field is real.
In framebased descriptions, this supposed field can be made to appear or disappear by switching between "accelerated" and "inertial" coordinate systems.
More advanced descriptions
As the situation is modeled in finer detail, using the general principle of relativity, the concept of a framedependent gravitational field becomes less realistic. In these Machian models, the accelerated body can agree that the apparent gravitational field is associated with the motion of the background matter, but can also claim that the motion of the material as if there is a gravitational field, causes the gravitational field  the accelerating background matter "drags light". Similarly, a background observer can argue that the forced acceleration of the mass causes an apparent gravitational field in the region between it and the environmental material (the accelerated mass also "drags light"). This "mutual" effect, and the ability of an accelerated mass to warp lightbeam geometry and lightbeambased coordinate systems, is referred to as framedragging.
Framedragging removes the usual distinction between accelerated frames (which show gravitational effects) and inertial frames (where the geometry is supposedly free from gravitational fields). When a forciblyaccelerated body physically "drags" a coordinate system, the problem becomes an exercise in warped spacetime for all observers.
See also
 Rotating reference frame
 Fictitious force
 Centrifugal force
 Coriolis effect
 Inertial frame of reference
 Free motion equation
References and notes
 ^ "Accelerated Reference Frames". Retrieved 20230906.
 ^ Emil Tocaci, Clive William Kilmister (1984). Relativistic Mechanics, Time, and Inertia. Springer. p. 251. ISBN 9027717699.
 ^ Wolfgang Rindler (1977). Essential Relativity. Birkhäuser. p. 25. ISBN 354007970X.
 ^ Ludwik Marian Celnikier (1993). Basics of Space Flight. Atlantica Séguier Frontières. p. 286. ISBN 2863321323.
 ^ Harald Iro (2002). A Modern Approach to Classical Mechanics. World Scientific. p. 180. ISBN 9812382135.
 ^ Albert Shadowitz (1988). Special relativity (Reprint of 1968 ed.). Courier Dover Publications. p. 4. ISBN 0486657434.
 ^ Lawrence E. Goodman & William H. Warner (2001). Dynamics (Reprint of 1963 ed.). Courier Dover Publications. p. 358. ISBN 048642006X.
 ^ M. Alonso & E.J. Finn (1992). Fundamental university physics. AddisonWesley. ISBN 0201565188.^{[permanent dead link]}
 ^ "The inertial frame equations have to account for V_{Ω} and this very large centripetal force explicitly, and yet our interest is almost always the small relative motion of the atmosphere and ocean, V' , since it is the relative motion that transports heat and mass over the Earth. … To say it a little differently—it is the relative velocity that we measure when [we] observe from Earth’s surface, and it is the relative velocity that we seek for most any practical purposes." MIT essays by James F. Price, Woods Hole Oceanographic Institution (2006). See in particular §4.3, p. 34 in the Coriolis lecture
 ^ Peter Ryder (2007). Classical Mechanics. Aachen Shaker. pp. 78–79. ISBN 9783832260033.
 ^ Raymond A. Serway (1990). Physics for scientists & engineers (3rd ed.). Saunders College Publishing. p. 135. ISBN 0030313589.
 ^ V. I. Arnol'd (1989). Mathematical Methods of Classical Mechanics. Springer. p. 129. ISBN 9780387968902.
 ^ Milton A. Rothman (1989). Discovering the Natural Laws: The Experimental Basis of Physics. Courier Dover Publications. p. 23. ISBN 0486261786.
reference laws of physics.
 ^ Sidney Borowitz & Lawrence A. Bornstein (1968). A Contemporary View of Elementary Physics. McGrawHill. p. 138. ASIN B000GQB02A.
 ^ Leonard Meirovitch (2004). Methods of analytical Dynamics (Reprint of 1970 ed.). Courier Dover Publications. p. 4. ISBN 0486432394.
 ^ Giuliano Toraldo di Francia (1981). The Investigation of the Physical World. CUP Archive. p. 115. ISBN 052129925X.
 ^ Louis N. Hand, Janet D. Finch (1998). Analytical Mechanics. Cambridge University Press. p. 324. ISBN 0521575729.
 ^ I. Bernard Cohen, George Edwin Smith (2002). The Cambridge companion to Newton. Cambridge University Press. p. 43. ISBN 0521656966.